On the Use of PLDA i-vector Scoring for Clustering Short Segments

نویسندگان

  • Itay Salmun
  • Irit Opher
  • Itshak Lapidot
چکیده

This paper extends upon a previous work using Mean Shift algorithm to perform speaker clustering on i-vectors generated from short speech segments. In this paper we examine the effectiveness of probabilistic linear discriminant analysis (PLDA) scoring as the metric of the mean shift clustering algorithm in the presence of different number of speakers. Our proposed method, combined with k-nearest neighbors (kNN) for bandwidth estimation, yields better and more robust results in comparison to the cosine similarity with fixed neighborhood bandwidth for clustering segments of large number of speakers. In the case of 30 speakers, we achieved evaluation parameter K of 72.1 with the PLDA-based mean shift algorithm compared to 65.9 with the cosine-based baseline system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast scoring for PLDA with uncertainty propagation via i-vector grouping

The i-vector/PLDA framework has gained huge popularity in text-independent speaker verification. This approach, however, lacks the ability to represent the reliability of i-vectors. As a result, the framework performs poorly when presented with utterances of arbitrary duration. To address this problem, a method called uncertainty propagation (UP) was proposed to explicitly model the reliability...

متن کامل

PLDA in the I-Supervector Space for Text-Independent Speaker Verification

In this paper, we advocate the use of the uncompressed form of i-vector and depend on subspace modeling using probabilistic linear discriminant analysis (PLDA) in handling the speaker and session (or channel) variability. An i-vector is a low-dimensional vector containing both speaker and channel information acquired from a speech segment. When PLDA is used on an i-vector, dimension reduction i...

متن کامل

Improving i-Vector and PLDA Based Speaker Clustering with Long-Term Features

i-vector modeling techniques have been successfully used for speaker clustering task recently. In this work, we propose the extraction of i-vectors from shortand long-term speech features, and the fusion of their PLDA scores within the frame of speaker diarization. Two sets of i-vectors are first extracted from short-term spectral and long-term voice-quality, prosodic and glottal to noise excit...

متن کامل

PLDA Modeling in I-Vector and Supervector Space for Speaker Verification

In this paper, we advocate the use of uncompressed form of ivector. We employ the probabilistic linear discriminant analysis (PLDA) to handle speaker and session variability for speaker verification task. An i-vector is a low-dimensional vector containing both speaker and channel information acquired from a speech segment. When PLDA is used on i-vector, dimension reduction is performed twice – ...

متن کامل

Sparse kernel machines with empirical kernel maps for PLDA speaker verification

Previous studies have demonstrated the benefits of PLDA-SVM scoring with empirical kernel maps for i-vector/PLDA speaker verification. The method not only performs significantly better than the conventional PLDA scoring and utilizes the multiple enrollment utterances of target speakers effectively, but also opens up opportunity for adopting sparse kernel machines in PLDA-based speaker verificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016